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Random walks on random partitions in one dimension
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Random walks orstate space partitionprovide an abstract generic picture for the description of macro-
scopic fluctuations in heterogeneous systems such as proteins. We determine the average residence probability
and the average distribution of residence times in a particular macroscopic state for the enseantdierof
partitions of a one-dimensional state space. In particular, the probability that a walker remains in an open-state
cluster decays in a manner that is slower than exponential but faster than a power law.
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I. INTRODUCTION macroscopic state of a protein arise in this picture from the
random walk leaving a patch corresponding to one mac-

At physiological temperatures, proteins fluctuate stronglyrostate and entering the patch of another macrostate. During
between different microscopic conformatiofts—4]. On a  the time the random walk stays in that patch the protein stays
macroscopic level, these microscopic fluctuations can manin that macrostate until it leaves the patch again either to
fest themselves as fluctuations between protein states of dignter the one it came from or to enter another; see Fig. 1. We
ferent functionality. One simple, well-known example is aWill call this approach the random walk on state space par-
protein acting as a passive ion channel that can be in eithdftion (RWSSR picture of macroscopic fluctuations.
an open or a closed Staﬁ§’6] Other examp|es are fluctua- Due to the Complicated interactions involved in a Strongly
tions of transport proteins between states of different binding'eterogeneous system such as a protein, the random walk in
activity for the ligand[7,8] or fluctuations of catalytic pro- Protein state space has to be viewed as one on a very rugged
teins between states of different catalytic effectivity. We will
advocate here a generic, albeit abstract, view for the descrip-
tion of these macroscopic manifestations of microscopic con- @) state 1 _ state 2
formational fluctuations. [\

Proteins are instances of systems with a high-dimensional
state spacg9]. This space of microscopic conformations can
be partitioned into sets corresponding to the different macro-
scopic protein states. Usually, several microscopic confor-
mations that are close to each other in state space will belong
to the same macroscopic state and will form a more or less
extended individual patch. All patches that belong to one
particular macroscopic state then make up one partition set;
see Fig. 1. There are several relevant topologies for the re-
spective structures of the partition regions in that high-
dimensional state space: one or several of them may perco-
late throughout the entire state space, but not the others, or
all of them may percolate. Note that, due to the high dimen-
sionality of the state space, independent percolation of dif-
ferent partitions is possible. However, having none percolate
requires special geometries and is unlikely to be encountered
[10]. (b)

Thermal fluctuations can, in general, be modeled success-
fully as a random walk in some state spaté&—13. Confor-
mational fluctuations of proteins, particularly at physiologi-

cal temperatures, are no exception to that. Fluctuations of the \\ //

state 1

state 3 —

state 2 state 3 state 2
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potential surfac¢l4]. Particularly in the low-temperature re- dimensional version of the model. We do not expect these
gime, this ruggedness imposes strong limitations on the part@sults to apply to observations on closing time distributions
of state space that are accessible at all, a feature known &sion channel proteins, whose state space, as noted above, is
“broken ergodicity” [15,16. Although there has been con- high dimensional. However, the work here is a prerequisite
siderable work on stochastic processes on rugged potential§), an understanding of the higher-dimensional behavior of
the properties of macroscopic fluctuations due to rugged pdhe model and its analysis is interesting in its own right. In
tential random walks on partitions are completely unknownOn€ dimension we can solve the model exactly in at least
up to now. Nevertheless, they could possibly give interestinghrée different ways, two of which we discuss here. The third

insights into the low-temperature behavior of glasses and dechnique, not discussed below, uses generating functions
proteins. and provides no additional insights. We find that in one di-

Here, however, we will be concerned with the high- mension our model exhibits an interesting and nontrivial

temperature regime. In this regime, random walks on ruggeHme _evo!ution. In particular, the probabil!ty that a walker .
potentials can be viewed on macroscopic length scales dgmains in an open-state cluster decays in a manner that is
free diffusion with some suitably renormalized diffusion co- Slower than exponential but faster than a power law.
efficient[17-19. It is also known that, e.g., Misbauer data

on protein fluctuations can be described successfully using Il. MODEL

an effective temperature-dependent diffusion coefficient in a \ye consider a one-dimensional lattice with unit spacing.

smooth, ,SlOWIV varying potentia0-23. We Wi”, therefore . Each site is present with probabilipyand absent with prob-
assume in the following that the random walk in the protemab”ity 1-p. At each time step, a random walker has an

conformational state space can be described in a first aRsqual probability of stepping to the left or to the right. The

proximation as free diffusion. uestion we seek to answer is this: Given that an ensemble of

The open-state—closed-state fluctuations of passive i0fhnqom walkers starts at time zero at the edge of a connected
channel proteins are a very suitable cand|d§1te for '”usnat'n%luster of sites, what fraction still resides within the same
the scheme that we sketched above. In this case there IScflster a time later?

simple, natural partitioning of state space, namely, the Open \ye frame the problem in this way because this quantity is
and closed states. In our approach, a channel that switcheg, iyalent to the fraction of proteins remaining in a particu-

from the open to the closed state can be thought of as Crosgy, macroscopic state, given that they switched to that state at
ing the boundary from a region of open-state configuration$_q That state could be, e.g., either the open state or the

to a region of closed-state configurations. On the other hanq,ysed state of an ion channel protein. However, as noted

there aIreany exists a vast array of experimental_ literature %Bhove, the observable usually reported in measurements of
the fluctuation properties of these channel proteins; see, .oy channel fluctuations is the distribution dbsing times.

Ref. [23] and references therein. Since single-channel flucynat is the connection between the distribution of residence
tuations can be monitored individually using the patch clampimes in a particular state(t) and the above defined frac-

technique|24], residence times in the open-state and closedgion, |etN(t) denote the fraction of proteins that remain in

state partitions are readily accessible for a statistical analysig, o macroscopic state at tiregiven that all switched to that

In particular, the distribution of residence times in the closediate at =0 We will call it. in analogy to the terminology in

state, usually called the closing time distributiBfosed 1), IS reaction-diffusion systems, theurviving fraction Since at
often observed to exhibit an algebraic regime witt

. i ) timet only those proteins that have a residence time greater
power law in many ion channel proteifid5—28§.

. . thant contribute toN(t), we have
We have discussed some preliminary results of an analy-

sis of this model in other papef29,30. There we treated a 3
particular form of state space partitioning, motivated by the N(t)=f dt'P(t") 2.1
ion channel situation—a single patch corresponding to an !
open statg, surrounded by closeq sta.tes—and_ we investiggtgﬂd so the residence time distribution is given by
the generic behavior of the closing time distribution and its
dependence on state space dimension. P(t)=—dN(t)/dt. (2.2

In this paper we begin a more detailed study of the
RWSSP approach. Here we will not make any specific asTherefore, by computingi(t) we can deduc(t).
sumptions about the partitioning of state space but rather we We will take the origin as a vacant site to the left of a
will treat it asrandom each state is assigned to one macro-cluster. The random walker starts at site 1ta0, thereby
scopic partition with a probabilityp and to the otheor  satisfying our formulation of the problem. We will denote
otherg with a probability -p. We will be interested in the the averages over all distributions of present and absent sites
behavior of the distribution of residence times in that particu(with probability p) by (), .
lar partition, averagedover the defined ensemble of state
space partitionings. In this way we will be able to distinguish Ill. EIGENEUNCTION EXPANSION
whether any experimentally observed dynamics depends on a
particular topology and geometry of state space partitioning In our first approach we calculate exactly the time evolu-
or whether it can be explained simply as a generic propertyion of the fraction of random walkers inside a cluster of size
of a particularstate space volume fractioof the macro- | and the corresponding residence time distribution by solv-
scopic states in question. ing the eigenvalue problem of the corresponding transition

We will confine our attention in this paper to the one- rate matrix. The quantitie&N(t)), and(P(t)), are then ob-
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tained by averaging over the distribution of cluster sigeis 4  [jmw
the ensemble. We first formulate the problem in continuous aj(l)= =1 sir? > cos
time. However, the problem can be solved equally well in a

discrete time formulation, which is done later in this section.Note that the term sfitj «/2) is one for odd values of and

In Sec. IV we will present, as an alternative approach, &ero for everj. Using Eq.(2.2), the residence time distribu-
direct counting technique to solve the discrete time problemyjon p (t) follows from Eq.(3.9):

Let us consider a random walker that starts at an edge of
a one-dimensional cluster of sit@nd is able to escape from

jm

2(1+1))° 3.9

that cluster at both ends. The probability distributioyut) Pi(t)= —Z aj(HneM. (3.10
over the sites 1 . . | is then the solution of the equation =1
AP n the corresponding discrete time problem, the distribu-
P =Ap(1), (3.9 In ding di ! bl he distrib

tion p,(t) is defined only for discrete values 6%0,1, . ..
and the differential equatio(8.1) is replaced by

where thetransition ratematrix A, is given by
-2 1 0 0 -+ 0 pi(t+1)=Wp(t), (3.11
1 -2 1 0 0 where thetransition probabilitymatrix W, is given by
=71 0 1 -2 1 - 0
A=r ‘ , (3.2 010 0 0
) 1 1
0 0 0 - 1 -2 2 0z 0
: . o . . W=|0 % 0 1 0f. (3.12
with 7 being the hopping time scale. Since the choice of the
starting edge is arbitrary, we use the initial condition
1 000 - % O
p,(0)= 0 . (3.3  Eigenvalues and eigenvectors are determined analogously to
: the continuous time case. Now the eigenvalues are
0

It is a straightforward exercise to exploit the cyclic prop-
erties ofA; and determine the eigenvalugsand eigenvec- and the eigenvectors are identical to E2;5). In the discrete
torse(j) by a Fourier transform ansatz. One finds time case the exponential is replaced by an appropriate
power of the respective eigenvalue, i.e., we get for the frac-
Nj=—2[1-cogk)]/r=—4sirf(ki/2)/ (3.4 tion of random walkers still in thé cluster at timet

and !
N|<t>=JE1 aj(HA], (3.14
> =
ei(i)=\/r— sin(ik)), (3.5
' I+1 . with the same expansion coefficiertg!) as in the continu-
ith ous time case. The residence time distribution has to be de-
wit termined in this case by a discrete variant of E4j2), i.e.,
K=, j=1,..| 3.6 '
T GO b =N N+ 1)=S a;(DA{(1—))). (3.15
j=1

We note that the eigenvectof3.5) are already normalized.

With these eigenvectors and eigenvalues the solution of Eqs, Finally, we have to average our above results over the
(3.1—(3.3) is given by distribution of| clusters. The relative probability of a cluster

of occupied sites of lengthis given by(1—p)?p', where the

1 term (1—p)? arises from the two unoccupied sites at each
pi(t)= 2 e(j)e (j)eMt. (3.7 end. Correct normalization then leads to
j=1
p=(1-p)p' " (3.16

From this result the fraction of random walkers still in the
| cluster at timet is obtained by summing over all compo- Calculating the average is again straightforward,
nents ofp,(t),

- ' (N(©)p=2, Ni(B)p. (317
ND=3, 3 eeDett=3 a)e, (@8 T

=1
with a similar form for(P(t)),. Finally, the solution for
where the expansion coefficients are (N(t))p in the continuous time basis is
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“ ap'-t | jar L jm and
<N(t)>p—(1—p)|21 ) cog 507D Sir?| - .
. ) N.(t)— Tl (3.29
. |7 t+
xexp{—4smz(—2(|+1)) - (3.18 ‘/”_2
whereas in a discrete time basis it is respectively. The above results show that the cheieg is
. o necessary for a comparison of the discrete and continuous
4p jm ek time cases and that they become equivalent, at least for large
<N(t)>p_(1_p);1 +1 & cos’ 2(1+1) sm2<7) t. However, as was to be expected from the choice of the
_ model, the discrete time case exhibits the featureNh@) is
% cod |J+7T1 (3.19 constant for pairs of successive time points.

IV. DIRECT COUNTING PROCEDURE

A detailed numerical analysis of these results will be ) ] _
given in Sec. V. In Sec. IV we will present an alternative _ The next method employs a direct counting technique.
derivation of the discrete time results, based on a direct his method will prove to be particularly useful in examin-
counting scheme for individual random walks, that will ing our problem on higher-dimensional lattices. However,
prove useful for higher-dimensional systems. However, bewe defer discussion of that problem to a future paper. Here
fore doing so we will give a discussion on how the time We will justintroduce the technique and show its application.
scales of the discrete time and continuous time results are We consider am-step walk[corresponding tan time
related. For that purpose it is useful to analyze the survivingteps, i-e., we will relabelN(t)), to (N(n)),] and ask for
fraction N (t) for a largel cluster. Asymptotically for large the probability that the walker has not been absorbed, i.e.,
|, the sum in Eq(3.8) can be replaced by an integral and thehas not stepped onto a missing site. The basic idea in this
fast oscillating function sfij 7/2) can be replaced by This ~ @pproach is the observation that each time the walker steps

procedure leads eventually to on a previouslyuntestedsite, there is a probabilitp that the
walker remains in the starting cluster. Any step to a previ-
No.(t)=limN,(t)=e " 2/Tly(2t/7)+1,(2t/7)] (3.20  ously tested site, of course, will result in the walker remain-
|—o0 ing in its starting cluster with probability one. L&(n) de-

note all possible realizations of anstep walk, subject to the
in the continuous time case, whdrgandl ; are the modified constraint of never stepping to a negative level, andj(&)
Bessel functions of order zero and one, respectiyal. equal the number of sites touchatl least onceby the kth
[We note that this functional dependence appears often whewalization of such a walk. For unbiased walks it then follows
reaction-diffusion processes in semi-infinite one-dimensionathat
systems are considered; see, e.g., IR2T]; see also Ref.
[32], for a case where a physically unrelated quantity, the cm
time-dependent rate coefficient at a trap in the thermody- (N(N)),=(3)" >, pak. (4.)
namic limit of a one-dimensionadll-particle diffusion prob- k=1
lem, obeys the same basic equations as Nyt).] In the

discrete time case the result is However, although a good starting point for simulations,

this formula is still impractical to deal with analytically.

1 [ Rather, we classify eaafrstep walk by the siten it finally

N.(t)=— f dx{cos(x)+codT(x)]. (3.2)) reaches and by the largest distance from level 0 it assumes
m™Jo during the walk; the latter we denote by+i. Clearly, each

such walk has visited exactlyn+i different sites. Let

Only the cosine term with an even exponent gives a nonzerg  ..(n,m) be the number of walks in that class; Hg.1)
contribution after integration. Therefore, we get eventually can then be rewritten as

2

t+1J | n [(n—m)/2] .
T‘1>-- <N(n)>p=(%)”m§0pm > pCrui(nm). (42

N (t)= 1 ) (3.22
(2 2 )” It turns out that it is helpful to use a somewhat different

quantity, namely, the number of ways in which a walker,

where the floor functionx| gives the integer part of and starting at site 0 and never stepping onto a negative site, can
the double factorial is defined by (!! =2™m! and (2m reach sitem without goingbeyondlevel m+i. We will call

— 1)1l =2™(m+1/2)/\/7 [31]. For large values of the thiS quantityWs,(n,m).
functions(3.20 and(3.22 approach Itis easily seen that

Crri(nm)=Wgi(n,m)—Wpi_1(n,m). (4.3

N (t)— (323)

wtlT Using this relation, Eq(4.2) can be rearranged as
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n o Tl(n-m)/2| . which can be rewritten as
(NMYp=H"2 | 2 pP™ (1= p)Wpi(n,m) . 11
m=0 =0 2p'(1 e Ja jm
(N(n)>p:§0 iz ]Zl kz Coé‘(—2 sin| )
+ p(n+m)/2+1w(n+m)/2(n,m) . (4.9 Kj
Xsin m)

The advantage of using the quantitg,, ;(n,m) is that = ool-1(1 I . .
they can be determined by repeated application of the reflec- :2 u 2 2 cod 7 sin J_Tr)
tion principle for unbiased random walk33]. The calcula- =1 I+1 =i I+1 [+1
tion is straightforward, though tedious, and the result is i

) a
Xsin 1 4.9
n n
W i(nm)=| n+m| —> n+m . The series>}_, sin[kj=/(I+1)] is evaluated by rearrang-
" 2 k=0 > T 1+k(m+2+i) ing the terms in the series
[ .
n jm jm eIk 2jm
| nem E = sm( +sin| ) +| sin| ——
o2 k(M 2+4) SRR I+l I+l I+l
fU=Djm [ 3jm7
n + sin 11 +|sin m
-> n+m o i
<o T+1+|+](m+2+|) U=2)jm
+SII’]T +eee, (4.10
n
—|n+tm | . , (4.5  Which after some straightforward but tedious manipulation
T+(J+1)(m+2+l) yields
< jm im ] [in(1+2)
where the upper limits of the sums oudeandj are finite and E sin| ——| =sin —-|cs sin
" =1 2 2(1+1) 2(1+1)
depend on the condition that the value of the lower element (4.19)

of a binomial coefficient must be less than or equal to the
value of the upper element. In Appendix A we show that  pjygging the above result back into E4.9), we finally have

I+1 . Z 4p' 1 !
1 2 K =(1—
( ) Wi(n, m)——_z coé‘( )sm m) (N(m)p=(1 D)Z‘l [+1 JZ CO§1(I+1 cos’ 2(I+1)
[(m+1)jm X sir? jl), (4.12
X sin, T (4.6 2
which is identical to Eq(3.19.
We now prove the equivalence of E.19 and Egs.

(4.4 and (4.5. Since in ann-step walk the walker cannot V. RESULTS
reach a level higher thalfn+m)/2| and a sitem beyond . . . ) .
level n, i.e., C;(n,m)=0 for i>|(n+m)/2] and m=n, the From a numerical point of view, the continuous time and

sums oveii andm in Eq. (4.2 can be extended to infinity, discrepe time cases .dif_fe.r fundam_entally. While for thg dis-
crete time case the infinite sum eigenfunction expansion re-
sult Eq.(3.19 can be replaced by a finite sum, using Egs.
o i o (4.4 and (4.6), this cannot be done in the continuous time
(N(n)p=(3) m§=:O 26 P Crri(nm). (47 case Eq(3.18. In this paper we will follow traditional lines
and take the result for the continuous time case as the start-
ing point for a numerical analysis of the behavior of the

Combining Eq.(4.7) with Egs.(4.3) and(4.4), we have quantities of interest. Details of an effective numerical evalu-
ation of Egs.(4.4) and (4.6) are deferred to a future paper.
== apl1ep) l+1 ) ) We note, however, that both approaches show excellent nu-
P p Jmy T merical agreement over many decades.
(N())p= 2 Zm S 1+2 ,2::1 cos [+2 sin |+2 Since, for a particular value df and p, N(t) increases
. monotonically ad increases, wheregs * decreases, it is
% sin (m+1)j 77) 4.8 necessary to find a good truncation criterion for the infinite
[+2 ' ' sum. FortunatelyN,(t) is bounded from above by
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log1 0N(t)

6 log, t/7 8

FIG. 2. (N(t)) vst for p=0,0.5,0.9,0.99,0.999,(rom left to

right).

N.(t)y=e 2Tly2t/7)+1,(2t/7)];

see Sec. lll. The Bessel functions in E§.1) can be evalu-

(5.7

ated to sufficient accuracy using standard technifig&s4.

Utilizing N.(t) it is possible to give an approximation to

(N(t)), that involves only the evaluation of a finite sum

L

<N<t>>p,appmx=<1—|o>|§1 p'IN|(1) + pENL(1), (5.2

wherel is determined from the condition

€
Nx(t) - NL(t)<E p7L<N(t)>p,approm

(5.3

For intermediate values gfit is clearly seen thatN(t)),
is faster than algebraic but slower than exponential. In order
to analyze the nonexponentiality oR(t)), in more detai,
we have replotted the data of Fig. 2 in a In-In vs In plot in
Fig. 3. The advantage of such a representation is that a Kohl-
rausch or Williams-Watts behavior exp(t/ 7)*?], used very
often successfully as a nonexponential two-parameter fit
function, shows up as a straight line with slogeFigure 2
demonstrates that two to three different regimes can be dis-
tinguished. First, there is an initial exponential decay. For
most values of, this single-exponential decay turns even-
tually into a nonexponential decay that can be described ap-
proximately as Kohlrausch behavior wi<1, with 8 de-
pending onp, as demonstrated by the approximately straight
lines with slope smaller than 1 for large values ot .IrFor
values ofp close to one, however, there appears an interme-
diate regime whergN(t)), follows closely N..(t), until it
also turns into a Kohlrausch decay.

The initial single-exponential decay can be easily ana-
lyzed. Using the fact thdi,(0)=—2/7 and N,(0)=—1/7 for
I>1, it follows immediately that

d
at :O<N(t)>p=—(2—p)/7, (5.5

t

which determines the initial exponential to be pxg2
—p)t/7].

There is always some arbitrariness involved when a non-
exponential decay is fitted to a particular decay function,
e.g., a Kohlrausch function. One of the main problems is the
choice of the time range that is used for the fit. Since Fig. 3
suggests that it is particularly the long-time regime that ex-

where G<e<1 was assumed. This condition guarantees thagipits a Kohlrausch behavior, a more systematic approach is
the relative error of N(t))p, approxiS Smaller thare.

Our numerical results fofN(t)), in Eq. (3.18 are shown

in Figs. 2 and 3 for a wide range of valuespfForp=0 the

state space partition of interest contains only a single site.

possible. In the following, we will approximate the long-time
behavior of(N(t)), by a Kohlrausch-like function

Nk (t)=qexd —(t/7¢)”], (5.6)

Since an escape is possible to each neighboring site, this

leads to a single-exponential decay ex@t/7). In the other
extreme case, fop=1, we have a semi-infinite stretch of

states, andN(t)),—, is given byN_(t), defined in Eq(5.1)
above. The long-time behavior &f,(t) is then algebraic,

N, (t)—

mtl T

(5.9

4
In IIn N(t)l
3

FIG. 3. (N(t)) vs t in a IniIn wvs
p=0,0.5,0.9,0.99,0.999,@rom left to righ.

2 Inyr

In plot

for

where the parameters, 7, andq are determined by the
requirement that Eq(5.6) describes correctly the low-
frequency behavior of the Laplace transform of the exact
function (N(t)),,. This guarantees that E¢b.6) is the best
possible Kohlrausch-like function to describe the long-time
behavior of(N(t)),. An advantage of the procedure we use
is that the low-frequency moments (¥(t)), can be deter-
mined in closed form. How this is done in detail is discussed
in Appendix B.

Figure 4 demonstrates the quality of the Kohlrausch fit by
giving a comparison with the exact behavior for some values
of p. Figures %a), 5(b), and 5c) show the dependence of the
parameterss, 7, andq, respectively, orp. It is clear that
B(0)=1 for p=0. For p—1, B approaches a nonzero limit
value 8(1)=0.271 38. However, in this limit the contribution
of the Kohlrausch functior{5.6), measured by, vanishes
linearly with (1—p), while the time scaler diverges with
(1—p)~L. This result is obvious since in that limit the long-
time behavior becomes the algebraic decay obtained for a
semi-infinite cluster Eq(5.4). Still, we can expect that the
Kohlrausch description gives a satisfactory picture of the
long-time behavior for values g from 0.5 up to 0.99, as
Fig. 4 demonstrates.
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4
In Iln N(o)
3

-2 |

-4 0 4 8 12 Int/t 16

FIG. 4. Comparison ofN(t)) (solid line) and the Kohlrausch fit
Eq. (5.6) (dashed lingfor p=0.5,0.9,0.99from left to right.

VI. SUMMARY AND DISCUSSION

an interesting and nontrivial anomalous time evolution. In
particular, the probability that a walker remains in a particu-
lar cluster of states decays slower than an exponential but
faster than a power law. The long-time behavior can be mod-
eled satisfactorily as a stretched exponential.

Anomalous relaxation of correlation functions is a well-
known feature of glasses and other heterogeneous systems;
see Ref[35] and references therein. Many theories that give
rise to anomalous dynamical behavior fall into one of two
classes. The first is essentially a static disorder picture. Here
the system is assumed to be confined to some small patch of
its state space, e.g., due to high barriers at low temperatures.
These frozen-in state space patches differ between different
instances of the system in a sample, which leads to an overall
averaging for the observable in question. In its simplest form
this approach leads to a distribution of relaxation times for
single-exponential decay functions, but more sophisticated

We have analyzed the average residence probability anleatments also exist. The other approach can be thought of
the average distribution of residence times in a particulars a dynamic disorder picture. Simple local processes inter-

macroscopic state for the ensembleafidom partitionsof a

act with one another, e.g., due to dense packing at low tem-

one-dimensional state space. We find that our model exhibitgeratures, thereby leading to strongly constrained overall dy-

08 T

0.6 T

0.2 T T

FIG. 5. Kohlrausch parameters psfor the long-time behavior
of (N(t)): (@ B, (b) 7, and(c) g vs p.

namics, often modeled as a random walk on a rugged
potential landscape.

In our approach the physical reason for the anomalous
dynamical behavior is different from both of the above ap-
proaches. The microscopic dynamics of the system is not
constrained; the system wanders freely through its state
space.(This is appropriate for a system at relatively high
temperatures, as described in the Introducjidfere state
space patches arise naturally because the macroscopic ob-
servable under study has only two states. The observed
anomalous dynamical behavior then arises from the resulting
partition of the state space. It would be interesting to see
whether this framework can give also some insight into the
description of relaxation processes in other glasslike sys-
tems.
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APPENDIX A: DERIVATION OF EQ. (4.6

In this appendix we derive Ed4.6), which is the prob-
ability that ann-step walk ending at siten never goes be-
yond levell, given that the walk starts from site 0. We first
extend the sum overto | +2 on the right-hand side of Eq.
(4.6), which will not affect the result, since the term corre-
sponding toj=1+2 is zero. The advantage of this change
will be seen later when we do the summations. Therefore, we
demonstrate that

1 ”W 2 g @ jm\ [ 7

2) Witnm)= =7 2, cos| T |sin 5
s (m+1)jm AL
sin 5 — (AL)

Rewriting the right-hand side of EqAl), we find that
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2 1+2 j’7T (m+1)jm 2 I1+2 giliml(1+2)] 4 g=ilim/(1+2)]]N
— cos' sin =
E I+2 I+2 [+2 +2 = 2
elliml(1+2)]_ g=iliml(1+2)]][ gil(m+1)jal(1+2)] _ g=il(m+1)jm/(1+2)]
X - -
2i 2i
2-n- 11+2 n
_ i[j /(1 +2)1(n—2K)[ il (M+2)j /(1 +2)]
|+2 Jz—:l; ( ) [e
+e—i[(m+2)jw/(|+2)]_ei[mjw/u+2)]_e—i[mjw/(|+2)]
2*[’1*1 n n 1+2
__ eil(n=2k+m+2)jm/(1+2)]
===
142 [+2
+2 ei[(n—zk—m—znm(wz)]_z ell(n=2k+m)jml/(1+2)
=1 =1
142
_2 i[(n—2k— m)]7T/(|+2):|:| (AZ)
=1
Applying the formula
1+2 iTkal(1+2)]¢ il (1+2)ka/(1+2)] _
2 ei[kj-:r/(l+2)]:e .(e D (A3)
= el[k’n’/(|+2)]_1 ’
Eq. (A2) becomes
o-n-1 N /o ei[(n—2k+m+2)7r/(l+2)](ei[(n—2k+m+2)(l+2)7r/(|+2)]_1)
T g’o (k) Sl(n—2kFm¥ 21+ 2] _ 1
|[(n 2k—m— 2)77/(I+2)](e|[n 2k—m-2)(1+2)7/(1+2)] 1) |[(n 2k+m) 7-r/(l+2)](e|[(n 2k+m)(I1+2)7/(1+2)] 1)
+ gl[(n—2k—m-2)al(T+2)]_ | ell(n—2kFm)=/(1+2)]_q
ei[(n—2k—m)7-r/(l+2)](ei[(n—2k—m)(l+2)7-r/(l+2)]_1)
- el[(n=2k-ma/(T+2)]_ 1 . (Ad)

Equation(A4) is always real. Furthermore, only some of the values ofKiselead to non-zero terms. Those terms that
contribute to the sum in EqA4) correspond tk= (n+m)/2+1+k'(1+2), (n—m)/2—1+k'(I1+2), (n+m)/2+k'(1 +2),
and n—m)/2+k’(1+2), wherek’ is any integer betweer o andw. We then apply I'Hspital’s rule to evaluate these terms.
As an example, we compute the first term here.

In _order to make the notation more compact, leg/l(""FMT(+Al=g  Therefore, we have
gll(n=2ktm+2)(+3)7/(1+2)] = gI+3 The first term in Eq(A4) is now
—n=1 N eil(n=2kem2)(1+3) 7l (142)] _ gil(n—2k+ m+2)m/(1+2)] o-n-1 N o gl+3 g
IZO K (- 2ZkFmr 271+ 21 | - go K ) (A5)
We apply I'HGspital’s rule to obtain the residues for E#\5) at s=1, which yields
ds*?® ds
i I+3_s i dk  dk 26)
im =lim ————,
so1 571 s—1 d_S
dk

where
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dS_ —2i A7
dk 1+2 > (A7)
When s=1, we have 0—2k+m+2)/(1+2)=2k’, wherek'=—»,...,—2,—-1,0,1,2... . Replacingk by k', we then
have, ats=1,
143 —2mi 2
21 n 13 T2 712
_ E n+m .
+2 =, T+1+k’(l+2) —2i
I+2
o n n
=—2-n"1 n+m , +| n—m , ) A8
zo T+1+k (1+2) T_1+(k +1)(1+2) (A8)
Doing the same to the other terms, we finally have
2 Iil @ jim\ [ im)\ . [(m+D)jm
1+2 = %\ i+ 2)M 23N T2
1\ © n n
:(_) -> n+m , +| n+m ,
2 Kmo T+1+k(l+2) T+1+I—m+k(|+2)
. n n
+ n+m +[ n+m
zo T+k’(|+2) T+2+I—m+k’(|+2)
1\ 02 n o n n
== n+mj| - > n+m —[ n+m
2 =0 ——+1+k(1+2) ——+2+1-m+k(l+2)
2 2 2
o n n
-> n+m . - ntm |
=0 5 +1+1-m+j(l+2) T+(]+1)(|+2)
12 me1 n “ | mt1+2(k+H1)(1+2) :
=z ——— [ ntm| +> m
2 n+m K=o | N+ m ——+(k+1)(1+2)
51 2 —— 1k 1)(1+2) 2
n
2l —m+3+2k(1+2)
n+m ——+1+l-m+k(l+2)
—— T2+l -mik(+2) 2
1 n
=(§> W,(n,m). (A9)
|
With |=m-+i, W;(n,m) in Eq. (A9) is indeed the same as in 1\n o 141 jm jm
Eq. (4.5. In fact, there are a finite number of terms in Eq. (f) W, (n,m) = cos' T2 sin T2
(A9) that have nonzero values for the binomial coefficients. 1=
In other words, the upper limit of the sum ovkris finite (m+1)jm

unless the upper elementof those binomial coefficients is X sin
infinite. Therefore
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which is the desired result. A generalization of this scheme to higher-order moments is
straightforward. In particular, we obtain

APPENDIX B: GENERALIZED MOMENT

KOHLRAUSCH FIT m-1=112, (B8a)

The method of generalized moment expansi@6— u_o=l1{1+21)(1+2)/24, (B8b)
40,21,4] allows a systematic analysis of the long-time be-

havior of observables. In particular, it provides a possibility w_z=l(1+21)(1+2)(12+ 21 +2)/240. (B8¢)

to obtain the parameters of exponential and nonexponential

approximations to the observable in question in a systematigor the ensemble-averaged observgblét)), , however, we

way. In the following we will give a short review of the basic stjll have to average Eq¢B8) over the cluster size distribu-
ideas and apply them to obtain a Kohlrausch-like descriptionion (see Sec. I)l with the result

of the long-time behavior ofN(t)).

The Laplace transform of a dynamical observable, e.g., of 1
N,(t), Eq.(3.14), defined by <Mfl>p:2(1—_p)y (B9a)
Ni(w)= fme*th t)dt, (B1) 1
i€ . 1 (h2do=Z 77 (B9b)
can be expanded formally for small frequencies (1+p)?

Ni(@)~ 2 pop(—w)" " (B2 _ ,
n=1 Based on the generalized moments of a dynamical observ-
_ o able, one can obtain approximations that exhibit the correct
The low-frequency expansion coefficients ,,, also called long-time behavior. This is done by the requirement that the
generalized moments, are given by approximations reproduce a specified number of these mo-

ments[39]. Specifically, am-parameter approximation func-

S tion of a particular functional form is required to reproduce

_p= t""IN(t)dt. (B3) ;

H—n (n—1)! Jo the momentsu_; to u_,, of the exact observable. In this

sense, the approximation obtained is thest possible ap-

Generalized moments can usually be represented as mat'ﬁ))goxmatm_nof th?t funct|o.na| form. . .
elements of powers of the inverse stochastic operator that Of particular interest in our case is a Kohlrausch-like
governs the time evolution of the observable. In our particu—unCtlon

lar case of a random walk on a cluster of lengtlEq. (B3) .

can be represented alternatively using powers of the inverse Nk(t)=qe ", (B10)

of the transition matri>xA(’,

which reproduces the correct long-time behavio{M(t)),, .
= (—1)MTTAD] e, B4 We require therefore that the parametqrsry , and 8 are
pon=(ZDTLTATT ey B4 chosen so that the moments of EB10),

where 1" denotes the constant row vect(r,1,1 . ..) and )

the unit vectore;=(1,0,0 . . T arises from the initial con- w = a 7 F<Z>, »=123, (B11)

dition Eq.(3.3). We note, in passing, that replacirg by n (v=1! B \B

in Eq. (B4) gives the well-known high-frequency moments

of the Mori-Zwanzig projection operator formalisp2,43.  reproduce the moments ¢N(t)), [Eq. (B9)]. This leads to
An analytical evaluation of EqB4) is, in our case, pos- the nonlinear equation

sible, e.g., using the techniques of Rdfa1] and[39]. In

particular, one introduces the auxiliary vector (m-1)p(p-3)p TR (3IB)

2 B12
(122 T (2" (B12
m=[A"D] 11, (B5)
for the (numerical determination ofB. With 8 given, the
This auxiliary vector is the solution of the equation other parameters are obtained immediately by
AVm= -1, (B6) (1_2)p T(1B)

T B13

| o <)y T(2IB) (B133
which can be solved analytically sinée" is a tridiagonal
matrix. Only the first component of that vector is of interestand

sincew 4 is given by

Ir(iﬂ_l B13b
B . ( )

L_i=ejm. (B7) q=(m-1)p 8
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